

INTEGRATED CIRCUITS, SILICON MONOLITHIC,

LOW POWER, QUAD, BIPOLAR OPERATIONAL AMPLIFIERS,

aRD124A

Detail Specification RDm 054

ISSUE 1

August 2018

TABLE OF CONTENTS

1	GENERAL	
	1.1 Scope	4
	1.2 Maximum Ratings	4
	1.3 Component Type Variants	4
	1.4 Radiation	4
	1.5 Physical Dimensions	4
	1.6 Pin Assignment	4
	1.7 Circuit Schematic	4
	1.8 Functional Diagram	4
2	APPLICABLE DOCUMENT	7
3	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	7
4	REQUIREMENTS	7
	4.1 General	7
	4.2 Outline Dimension	7
	4.2.1 Material and finish	7
	4.2.2 Case	7
	4.2.3. Lead	8
	4.2.4 Marking 4.2.5 Lead Identification	8
	4.2.6 Component Number	8
	4.2.7 Traceability Information	9
	4.2.8 Marking of Small Components	9
	4.3 Electrostatic Discharge Sensitivity	9
	4.4 Electrical Characteristics	9
	4.4.1 Electrical Measurements at Room Temperature	9
	4.4.2 Electrical Measurements at High and Low Temperature	9
	4.4.3 Circuits for Electrical Measurements	9
	4.5 Wafer Lot Acceptance	14
	4.6 Special In Process Controls	14
	4.7 Burn-In-Test	14
	4.7.1 Parameter Drift Value	14
	4.7.2 Conditions for Power Burn-In	15
	4.7.3 Electrical circuit for Burn-In	15
5	QUALITY ASSURANCE PROVISIONS	29
	5.1 General	29
	5.2 Quality Control practices	29
	5.3 Test Equipment and Inspection Facilities	29
	5.4 Inspection	29
	5.4.1 Precap CSI Inspection	29
	5.4.2 Quality Conformance Inspection : QCI (Final Acceptance Inspection)	29
	5.5 Screening Requirements 5.5.1 Percent Defective Allowable (PDA)	29
		30
	5.6 Quality Conformance Inspection : QCI (Final Acceptance Inspection)	30
	5.6.1 Environmental / Mechanical Subgroup	30
	5.6.2 Endurance Capability Subgroup 5.6.3 Assembly Capability Subgroup Tests	31
6	DOCUMENTATION	<u>32</u> 32
<u>6</u> 7	CERTIFICATE OF CONFORMANCE	32
8	PREPARATION FOR DELIVERY	32
0	8.1 Packing and Packaging	32
	8.1.1 Protection Against Electrostatic Discharge	33
	8.1.2 Package Identification	33
9	DATA REPORTING	33
	9.1 Coversheet	33
<u> </u>	9.2 Summaries	33
	9.3 Reject List	34
	9 4 Data Records	34
	Revision History	35

	TABLES						
1	TYPE VARIANTS	4					
2	MAXIMUM RATINGS	5					
3a	ELECTRICAL MEASUREMENTS DC PARAMETERS	10,11,12					
3b	ELECTRICAL MEASUREMENTS AC PARAMETERS	13					
4	SPECIAL IN PROCESS CONTROLS						
5	PARAMETER DRIFT VALUES FOR BURN-IN TEST AND UPON COMPLETION	15					
_	OF ENDURANCE TESTING						
6	CONDITIONS FOR POWER BURN IN AND ENDURANCE TEST	15					
7	SCREENING REQUIREMENTS	30					
8	ENVIRONMENTAL / MECHANICAL SUBGROUP TESTS	31					
9	ENDURANCE CAPABILITY SUBGROUP TESTS	31					
10	ASSEMBLY CAPABILITY SUBGROUP TESTS	32					
	FIGURE						
1	PHYSICAL DIMENSIONS	5					
2	PIN ASSIGNMENT	6					
3	CIRCUIT SCHEMATIC	6					
4	FUNCTIONAL DIAGRAM	6					
4a	MARKING	8					
5	POWER BURN-IN AND ENDURANCE TEST ELECTRICAL CIRCUIT	15					
6	CONNECTION DIAGRAM FOR THE TESTS CONDUCTED UNDER	16					
0	ELECTRICAL LOAD	10					
7(a-k)	CIRCUITS FOR ELECTRICAL MEASUREMENTS DC PARAMETERS	16-27					
8	DYNAMIC TEST MEASUREMENT CIRCUIT	28					
8(a)	SLEW RATE WAVEFORMS	28					
8(b)	OVERSHOOT AND RISE TIME WAVEFORMS	28					

1. GENERAL

1.1 Scope

This specification details the rating, physical and electrical characteristics, test and inspections data for a silicon monolithic, Low Power, Quad, Bipolar Operational Amplifier, based on Types LM124A This document defines screening and conformance inspection requirements and follows the general guidelines of ESCC 9000 for space-level products.

1.2 Maximum Ratings

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduled in Table 2.

1.3 Component Type Variants

Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1.

1.4 Radiation Features

Dose rate = 36 - 360rads(Si)/h

Maximum total dose available RHA designator F 300krads (Si)

1.5 **Physical Dimensions**

As per Figure 1

1.6 **Pin Assignment**

As per Figure 2.

1.7 Circuit Schematic

As per Figure 3

1.8 **Functional Diagram**

As per Figure 4

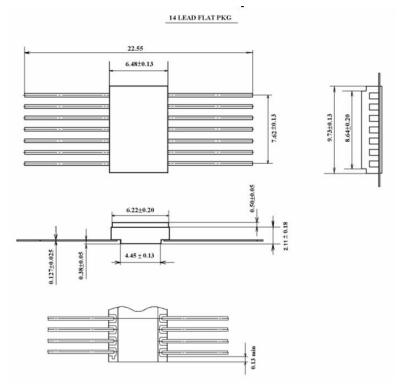
TABLE 1 - TYPE VARIANTS

Variant	Part	Case	Figure	Package drawing	Weight (gram) no more
01	αRD124A/ABQB	14-lead ceramic flatpack	1	Figure 1	1.50

Notes: AB - Package style (JEP 95, MO-092A, № 14)

Q - Performance grade

B - Ambient operating temperature range (-55°C,125 °C)


Table 2 - MAXIMUM RATINGS

No	Characteristics	Symbol	Maximum ratings	Unit	Remarks
1	Supply Voltage	Vcc	32 or ±16	V	-
2	Differential Input Voltage	V _{ID}	32	V	-
3	Input Voltage		-0.3 to +32	V	(1)
4	Input Current (VIN < -0.3 V)	I _{IN}	50	mA	(2)
5	Power Dissipation	P _D	700	mW	-
6	Output Short-Circuit Duration	Ios(t)	Indefinite		(3)
	(One Amplifier)				
7	Operating Temperature Range	Тор	-55 to +125	°C	-
8	Maximum Junction Temperature	Tj	+150	°C	-
9	Storage Temperature Range	Tstg	-65 to +150	°C	-
10	Lead Temperature (Soldering, 10	Tsol	+260	°C	-
	seconds)				
11	Thermal conductivity		18	W/mK	
12	ESD Tolerance		250	V	(4)

<u>Notes</u>

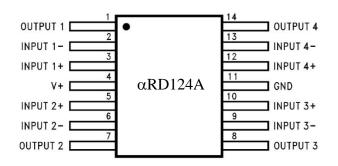
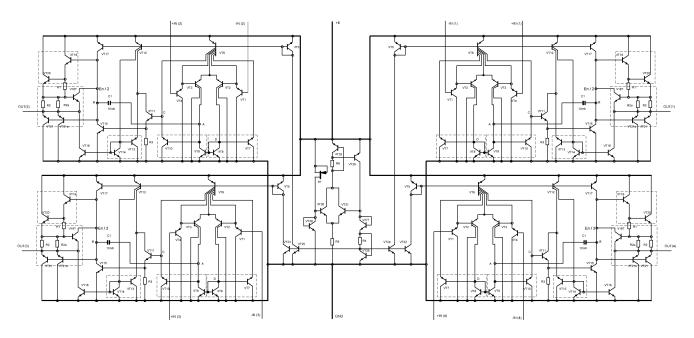

- (1) For supply voltages less than +32V, the absolute maximum input voltage is equal to supply voltage.
- (2) This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than 0.3VDC (at 25°C).
- (3) Short circuits from the output to Vcc can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA, independent of the magnitude of +Vcc. At +Vcc> +15V, continuous short circuits can exceed the power dissipation ratings and cause eventual destruction.
- (4) Human body model, $1.5 \text{ k}\Omega$ in series with 100 pF.

Figure 1 - PHYSICAL DIMENSIONS



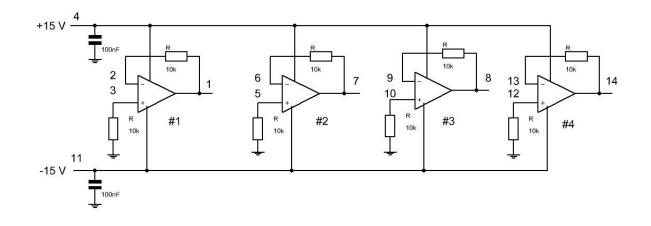

Figure 2 - PIN ASSIGNMENT

Figure 3 - CIRCUIT SCHEMATIC

Figure 4 - FUNCTIONAL DIAGRAM

2. <u>APPLICABLE DOCUMENTS</u>

The following documents form part of this specification and shall be read in conjunction with it:

- a) ESCC 21300, Terms, Definition, Abbreviation, Symbol And Units
- b) ESCC 9000, Integrated Circuits, Monolithic, Hermetically Sealed
- c) ESCC 20400, Internal Visual Inspection
- d) ESCC 20500, External Visual Inspection
- e) ESCC 20600, Preservation, Packaging and Dispatch of ESCC Components
- f) ESCC 21700, General Requirements for the Marking of ESCC Components
- g) MIL-STD-883, Microcircuit, Test Method Standard

3. TERMS, DEFINITION, ABBREVIATION, SYMBOL AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply. In addition, the following abbreviations are used:

- Vcc = Supply Voltage of the device under test.
- PSRR = Power Supply Rejection Ratio.
- OS = Overshoot.
- Tr = Rise time.
- Rsu = Supply Resistance.
- Icc = Supply Current.
- Ios(t) = Output Shot Circuit Duration.
- TBD = To Be Determined
- CSI = Customer Source Inspection
- QCI Quality Conformance Inspection

4. <u>REQUIREMENTS</u>

4.1 General

All devices supplied to this specification shall be in accordance with the ESCC 9000 flow requirements, except as specified or modified herein. Single wafer lot and single date code are required.

4.2 Outline Dimension

The dimension of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 1. Physical dimensions.

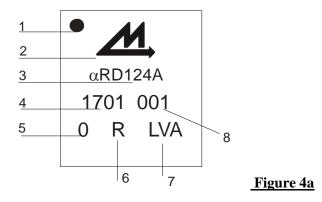
4.2.1 Material and finishes

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the microcircuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

Pure tin material shall be not used for any internal or external package surface or as a lead finish. Pure tin finish is fully prohibited. Pure tin definition is a percentage of tin superior to 97%.

4.2.2 Case

The case (FP14) shall be hermetically sealed and have ceramic body. The lids shall be welded.


4.2.3 Lead

Lead Finish: gold plate

4.2.4 Marking

The marking of components shall be in accordance with ESCC Basic Specification No. 21700. Laser marking is used, therefore a permanence of markings test (resistance to solvents test as specified in ESCC Basic Specification No. 24800) is not fulfill.

Each component shall be marked in respect of:

- 1. Lead Identification
- 2. Manufacturer Logo
- 3. Part number (αRD124A)
- 4. Lot Date Code
- 5. ESD Class
- 6. RHA designator
- 7. Country of origin
- 8. Serial Number. The serial number shall be permanently marked on the part for traceability to read and record data.

If device size precludes above marking requirements on the individual part, all of the marking shall be placed on the individual package for each part except that Lead Identification marking, Serial Number, and Lot Date Code, as a minimum, must be placed on the individual devices.

4.2.5 Lead Identification

Key should be located in the upper part of the small lateral plane of the package (Figure 4a, point 1).

4.2.6 <u>Component Number</u>

Each component shall bear the Component Number which shall be constituted and marked as follows:

Detail Specification Number

4.2.7. Traceability Information

Each component should have information about the traceability of production.

4.2.8. Marking of Small Components

The marking information in full shall accompany each component in its primary package

4.3 Electrostatic Discharge Sensitivity

The devices are susceptible to be damaged by electrostatic discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacture, testing, packaging, shipment and any handling.

4.4. Electrical characteristics

4.4.1 <u>Electrical Measurements at Room Temperature</u>

The parameters to be measured in respect of electrical characteristics are scheduled in Table 3(a) and 3(b). Unless otherwise specified, the measurements shall be performed at $T_A = +22 \pm 3$ °C.

4.4.2. <u>Electrical Measurements at High and Low Temperatures</u>

The parameters to be measured at high and low temperatures are scheduled in Tables 3(a) and

3(b). The measurements shall be performed at T_A = + 125°C and -55°C respectively.

4.4.3 Circuits for Electrical Measurements

Circuits for use in performing the electrical measurements listed in Tables 2 of this specification are shown in Figure 5.

Table 3(a) - ELECTRICAL MEASUREMENTS DC PARAMETERS (1) (2)

Parameter	Symbol	Test Fg.	Test Method MIL-	Conditions	TA, °C	L	imits	Units
			STD 883			Min	Max	
Input Offset	V _{IO}	7h	4001		+22 ±3	-2	2	
Voltage				$+V_{CC} = 30V, -V_{CC} = Gnd, V_{CM} = +15V$	+125(+0-3)	-4	4	mV
					-55(+5-0)	-4	4	
				R, F	$+22 \pm 3$	-2.5	2.5	
					$+22 \pm 3$	-2	2	
				$+V_{CC} = 2V, -V_{CC} = -28V, V_{CM} = -13V$	+125(+0-3)	-4	4	mV
					-55(+5-0)	-4	4	
				R, F	$+22 \pm 3$	-2.5	2.5	
					$+22 \pm 3$	-2	2	
				$+V_{CC} = 5V, -V_{CC} = Gnd, V_{CM} = +1.4V$	+125(+0-3)	-4	4	mV
					-55(+5-0)	-4	4	
				R, F	+22 ±3	-2.5	2.5	
					$+22 \pm 3$	-2	2	
				$+V_{CC} = 2.5V, -V_{CC} = -2.5, V_{CM} = -1.1V$	+125(+0-3)	-4	4	mV
					-55(+5-0)	-4	4	
				R , F	$+22 \pm 3$	-2.5	2.5	
Input Offset	I _{IO}	7e	4001		$+22 \pm 3$	-10	10	
Current				$+V_{CC} = 30V, -V_{CC} = Gnd, V_{CM} = +15V$	+125(+0-3)	-10	10	nA
					-55(+5-0)	-30	30	
				R, F	$+22 \pm 3$	-15	15	
					$+22 \pm 3$	-10	10	
				$+V_{CC} = 2V, -V_{CC} = -28V, V_{CM} = -13V$	+125(+0-3)	-10	10	nA
					-55(+5-0)	-30	30	
				R, F	+22 ±3	-15	15	
					$+22 \pm 3$	-10	10	
				$+V_{CC} = 5V, -V_{CC} = Gnd, V_{CM} = +1.4V$	+125(+0-3)	-10	10	nA
					-55(+5-0)	-30	30	
				R, F	$+22 \pm 3$	-15	15	
					+22 ±3	-10	10	1
				$+V_{CC} = 2.5V, -V_{CC} = -2.5, V_{CM} = -1.1V$	+125(+0-3)	-10	10	nA
					-55(+5-0)	-30	30	1
				R, F	+22 ±3	-15	15	1

Input Bias	±I _{IB}	7e	4001			$+22 \pm 3$	-50	0.1	
Current	-10			$+V_{CC} = 30V$, $-V_{CC} = Gnd$, $V_{CM} =$	+15V	+125(+0-3)	-50	0.1	_
						-55(+5-0)	-100	0.1	nA
				Г	R	$+22 \pm 3$	-75	0.1	_
				-	F	$+22 \pm 3$ +22 ±3	-130	0.1	_
				I	1	$+22 \pm 3$ +22 ±3	-50	0.1	
				$+V_{CC} = 2V, -V_{CC} = -28V, V_{CM} =$	-13V	+125(+0-3)	-50	0.1	nA
				1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	15 (-55(+5-0)	-100	0.1	_
				Г	R	+22 ±3	-75	0.1	
					F	+22 ±3	-130	0.1	
						$+22 \pm 3$	-50	0.1	
				$+V_{CC} = 5V, -V_{CC} = Gnd, V_{CM} = +$	-1.4V	+125(+0-3)	-50	0.1	nA
						-55(+5-0)	-100	0.1	
					R	$+22 \pm 3$	-75	0.1	
				F	F	+22 ±3	-130	0.1	
						$+22 \pm 3$	-50	0.1	
				$+V_{CC} = 2.5V, -V_{CC} = -2.5, V_{CM} =$	-1.1V	+125(+0-3)	-50	0.1	
						-55(+5-0)	-100	0.1	nA
					R	$+22 \pm 3$	-75	0.1	_
	DODD	_	1000		F	+22 ±3	-130	0.1	
Power Supply Rejection Ratio	+PSRR	7g	4003	$-V_{CC} = Gnd, V_{CM} = +1.4V, 5V \le V$	$C_{\rm CC} \leq 30 V$	+ 125°C ÷ -55°C	-100	100	μV/V
Common Mode Rejection Ratio(3)	CMRR	7c	4003	$+V_{CC} = 30V, -V_{CC} = Gnd, V_{CM} = 2$	28.5V	+ 125°C ÷ -55°C	76	-	dB
Short Circiut Output Current	I _{OS} +	7f	3011	$+V_{CC} = 30V, -V_{CC} = Gnd, V_0 = 25$	V	+ 125°C ÷ -55°C	-70	-	mA
Power Supply	Icc	7d	4005			$+22 \pm 3$,	-	3	
Current	100	, a	1000	$+V_{CC} = 30V, -V_{CC} = Gnd, R_L = 10$	kΩ	+125(+0-3)		U	mA
						-55(+5-0)	-	4	
					R, F	+22 ±3		3	
Low Level Output Voltage	Vol	7k	3007	$+V_{CC} = 30V, -V_{CC} = Gnd, R_L = 100$		+ 125°C ÷ -55°C	-	35	mV
					R, F	+22 ±3			
				$+V_{CC} = 30V$, $-V_{CC} = Gnd$, $I_{OL} = 5n$		+22 ±3 + 125°C ÷ -55°C	-	1.5	V
				+ $V_{CC} = 4.5V$, - $V_{CC} = Gnd$, $I_{OL} = 2\mu$	ıA	+ 125°C ÷ -55°C	-	0.4	v
High Level Output Voltage	Voh	7j	3006	+ $V_{CC} = 30V$, - $V_{CC} = Gnd$, $I_{OH} = -10$	0mA	+ 125°C ÷ -55°C	27	-	v
				$+V_{CC} = 4.5V, -V_{CC} = Gnd, I_{OH} = -1$	R, F	+22 ±3 + 125°C ÷	2.4		

TC	CI	ΓΤ		1
10	5	U.	C.	1

Table 3(a) - E	LECTRIC	CAL M	EASUR	EMENTS DC PARAMET	E <u>RS</u> (1) (2)	(Continued)			
Open Loop Voltage Gain	+AVS	7a	4004	+V _{CC} = 30V, -V _{CC} = Gnd, $1V \le V_0 \le 26V$, $R_L = 10k\Omega$		+22 ±3	50	-	V/mV
(Plus)						+125(+0-3), -55(+5-0)	25	-	
					R, F	$+22 \pm 3$	40	-	
				$\label{eq:VCC} \begin{split} V_{CC} &= 30V, \ \text{-}V_{CC} = Gnd, \\ 5V &\leq V_O \leq 20V, \ R_L = 2k\Omega \end{split}$		+22 ±3	50	-	V/mV
						+125(+0-3), -55(+5-0)	25	-	
					R, F	+22 ±3	40	-	
Open Loop Voltage Gain	AVS	7a	4004	+V _{CC} = 5V, -V _{CC} = Gnd, $1V \le V_0 \le 2.5V$, R _L = $10k\Omega$		+ 125°C ÷ -55°C	10	-	V/mV
C C				+V _{CC} = 5V, -V _{CC} = Gnd, $1V \le V_0 \le 2.5V$, R _L = $2k\Omega$		+ 125°C ÷ -55°C	10	-	V/mV
Output Voltage Swing (Plus)	Vout (+)	7b	4004	+V _{CC} = $30V$, -V _{CC} = Gnd, V ₀ = + $30V$, R _L = $10k\Omega$		+ 125°C ÷ -55°C	27	-	V
				+V _{CC} = 30V, -V _{CC} = Gnd, V _O = +30V, R_L = 2k Ω		+ 125°C ÷ -55°C	26	-	V
Input Offset Voltage Temperature Sensitivity(4)	$\Delta V_{IO} / \Delta T$	7h	4001	$+V_{CC} = 5V,$ $-V_{CC} = 0V, V_{CM} = +1.4V$		$\begin{array}{c} \text{-55}^\circ\text{C} \leq \text{T}_\text{A} \\ \leq +25^\circ\text{C} \end{array}$	-30	30	μV/ °C
Input Offset Current Temperature Sensitivity(4)	ΔΙιο/ ΔΤ	7e	4001	, $+V_{CC} = 5V$, $-V_{CC} = 0V$, $V_{CM} = +1.4V$		$\begin{array}{c} -55^{\circ}C \leq T_{A} \\ \leq +25^{\circ}C \end{array}$	-700	700	pA/° C
Input Offset Voltage Temperature Sensitivity(4)	ΔV _{IO} / ΔT	7h	4001	$+V_{CC} = 5V,$ $-V_{CC} = 0V, V_{CM} = +1.4V$		$\begin{array}{c} +25^{\circ}C \leq T_{A} \\ \leq +125^{\circ}C \end{array}$	-30	30	μV/ °C
Input Offset Current Temperature Sensitivity (4)	ΔΙιο/ ΔΤ	7e	4001	, $+V_{CC} = 5V$, $-V_{CC} = 0V$, $V_{CM} = +1.4V$		$\begin{array}{c} +25^{\circ}C \leq T_{A} \\ \leq +125^{\circ}C \end{array}$	-400	400	pA/° C

Notes:

(1) Post irradiation limits are identical to those listed under AC and DC electrical characteristics except as listed in the line denoted "R" and "F" (correspond to 100 krads (Si) and 300 krads (Si) respectively) of "Conditions" section Table 3(a). These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect.

Radiation end point limits for the noted parameters are ensured only for the conditions as specified in MIL-STD-883, Method 1019

(2) Low dose rate testing should be perform on a wafer-by-wafer basis, per test method 1019 condition D of MIL-STD-883, with no enhanced low dose rate sensitivity (ELDRS) effect.

(3) The input common mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is V^+ -1.5 V (at +22 ±3) but either or both inputs can go to +30 V dc without damage independent of the magnitude of V^+

(4) Calculated parameters

Table 3(b) - ELECTRICAL MEASUREMENTS AC PARAMETERS (1) (2)

Parameter	Symbol	Test Fig.	Test Method	Test Conditions	T _A , °C	Lir	nits	Units
		8.	MIL- STD 883			Min	Max	
Rise Time	Tr	71	4002	+ V_{CC} = 30V, - V_{CC} = Gnd Vout _{AC} = -200mV, Vout _{DC} = +600mV AcL=+1, RL=2 k Ω , CL=50pF	+ 125°C ÷ -55°C		1	ms
Overshoot	OS	-	4002	+ V_{CC} = 30V, - V_{CC} = Gnd Uout=(0V ÷ + 10V), AcL=+1, RL=2 kΩ, CL=50pF	+ 125°C ÷ -55°C		50	%
Slew Rate (Plus)	SR(+)		4002	$+V_{CC} = 30V, -V_{CC} = Gnd,$ Uout=(0V ÷ + 10V), AcL=+1, RL=2 kΩ, CL=50pF R, F	+ 125°C ÷ -55°C +22 ±3	0.1		V/µs
Slew Rate (Minus)	SR(-)		4002	$ +V_{CC} = 30V, -V_{CC} = Gnd, Uout=(0V ÷ +10V), AcL=+1, RL=2 k\Omega, CL=50pF R, F $	+ 125°C ÷ -55°C +22 ±3	0.1		V/µs
Noise Broadband	NIBB			$+V_{CC} = 15V, -V_{CC} = -15V,$ BW = 10Hz to 5kHz	+22 ±3	-	15	µVrm s
Noise Popcorn	NIPC			+ V_{CC} = 15V, - V_{CC} = -15V, R_S = 20k Ω , BW = 10Hz to 5kHz	+22 ±3	-	50	μVpK
Channel Separation	Cs			+V _{CC} = 30V, -V _{CC} = Gnd, R _L = $2k\Omega$		80	-	
(3)				$R_L = 2k\Omega$, $V_{IN} = 1V$ and $16V$, A to B		80	-	-
				$R_L = 2k\Omega$, $V_{IN} = 1V$ and 16V, A to C	+22 ±3	80	-	dB
				$R_L = 2k\Omega$, $V_{IN} = 1V$ and 16V, A to D		80	-	
				$R_L = 2k\Omega$, $V_{IN} = 1V$ and $16V$, B to A		80	-	
				$R_L = 2k\Omega$, $V_{IN} = 1V$ and $16V$, B to C		80	-	
				$R_L = 2k\Omega$, $V_{IN} = 1V$ and $16V$, B to D	-	80	-	-
	Cs			$R_L = 2k\Omega$, $V_{IN} = 1V$ and 16V, C to A		80	-	-
Channel Separation				$R_L = 2k\Omega$, $V_{IN} = 1V$ and 16V, C to B		80	-	
(3)				$R_L = 2k\Omega$, $V_{IN} = 1V$ and $16V$,	+22 ±3	80	-	dB
				C to D $R_L = 2k\Omega$, $V_{IN} = 1V$ and 16V,	$\pm 22 \pm 3$	80	-	
				$\label{eq:RL} \begin{array}{l} D \text{ to } A \\ \hline R_L = 2k\Omega, \ V_{IN} = 1 \text{ V and } 16 \text{ V}, \\ D \text{ to } B \end{array}$		80	-	
				$R_L = 2k\Omega$, $V_{IN} = 1V$ and 16V, D to C		80	-	

Notes:

(1) Post irradiation limits are identical to those listed under AC and DC electrical characteristics except as listed in the line denoted "R" and "F" (correspond to 100 krads (Si) and 300 krads (Si) respectively) of "Conditions" section Table 3(b). These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect.

Radiation end point limits for the noted parameters are ensured only for the conditions as specified in MIL-STD-883, Method 1019

(2) Low dose rate testing should be perform on a wafer-by-wafer basis, per test method 1019 condition D of MIL-STD-883, with no enhanced low dose rate sensitivity (ELDRS) effect.

(3) Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

4.5 Wafer Lot Acceptance

Wafer Lot Acceptance shall be performed in accordance with MIL-STD-883, test method 5007, if specified on the Purchase Order.

4.6 Special In Process Controls

Unless otherwise specified herein, all lots of components used for lot validation testing and for delivery shall be subjected to tests and inspections in accordance with table 4 of this specification.

Any component which do not meet these requirements shall be removed from the lot and no future time be resubmitted to the requirements of this specification.

Table 4 : <u>Special In Process Controls</u>

Component Lot Man	nufacturing		
Examination or test	MIL-STD-883 Test Method	Test Condition	Sample plan
Internal Visual Inspection	ESCC 20400		100 %
Bond strength (1)	2011	Condition C	2 devices
Die Shear (2)	2019		2 devices
	Encap	sulation	
Dimension Check	ESCC 20500		2 devices

To Screening tests

Notes:

(1) Destructive bond pull test

(2) The same test samples submitted to Bond strength

4.7. Burn-In Test

4.7.1. Parameter Drift Value

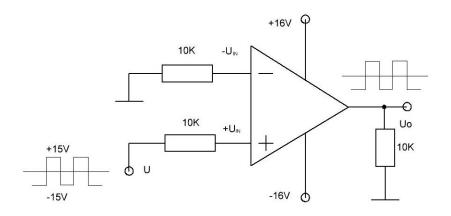
The parameter drift values applicable to burn-in are specified in Table 5 of this specification. Unless otherwise stated the measurements shall be performed at $T_{amb} = (+22\pm3)^{\circ}C$. The drift values (Δ) applicable to each parameter shall not be exceeded.

Table 5 – PARAMETER DRIFT VALUES FOR BURN-IN TEST AND UPON COMPLETION OF ENDURANCE TESTING

N°	Electrical Parameters	Symbol	Test Conditions	Delta (2	A) Limits	Unit
IN	Electrical Farameters	Symbol	Test Conditions	Min	Max	Unit
1	Input Offset Voltage	V _{IO}	$+V_{CC} = 30V, -V_{CC} = Gnd,$ $V_{CM} = +15V$	-0.5	+0.5	mV
2	Input Bias Current (positive)	$\pm I_{IB}$	$+V_{CC} = 30V, -V_{CC} = Gnd,$ $V_{CM} = +15V$	-10	0.1	nA

4.7.2. <u>Conditions for Power Burn-In</u>

The requirements for Burn-In are specified in table 6 of this specification. The components shall be subjected to a total power burn-in period of 240 hours.


Table 6 - CONDITIONS FOR POWER BURN IN AND ENDURANCE TEST

N°	Characteristics	Symbol	Condition	Unit
1	Ambient Temperature	T _{amb}	+125	°C
2	Positive supply voltage	V _{CC+}	+16	V
3	Negative supply voltage	V _{CC-}	-16	V
4	Duration	t	240	hours

4.7.3. Electrical Circuit for Power Burn-In

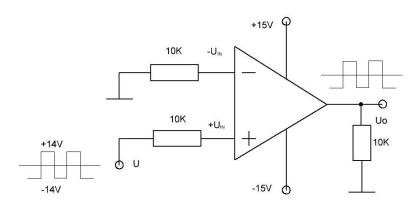

Circuit for use to perform the Power Burn-In tests is shown in Figure 5 of this specification.

FIGURE 5 - POWER BURN-IN AND ENDURANCE TEST ELECTRICAL CIRCUIT

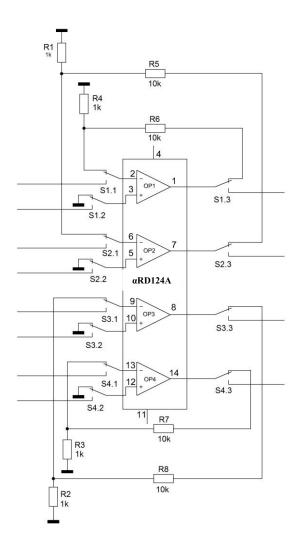
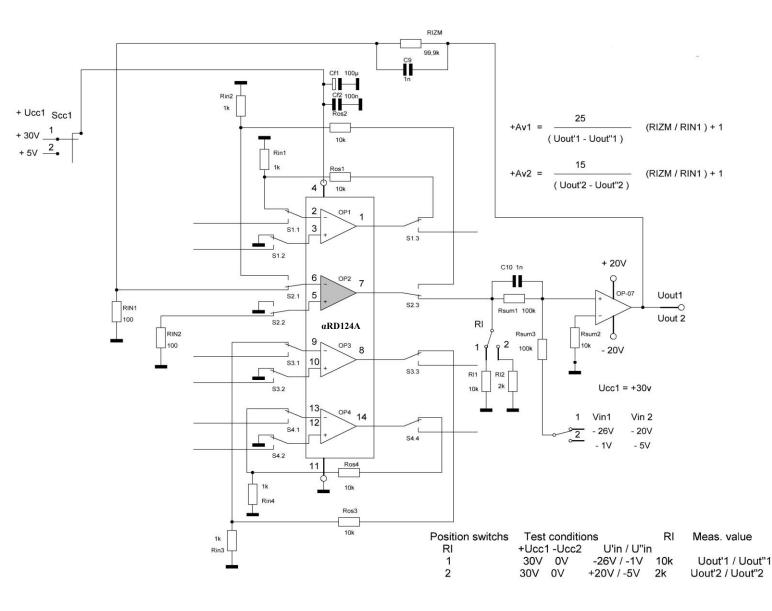


FIGURE 6 - CONNECTION DIAGRAM FOR THE TESTS CONDUCTED UNDER ELECTRICAL LOAD


FIGURE 7 – GENERAL CIRCUIT FOR ELECTRICAL MEASUREMENTS DC PARAMETERS

Unused measuring amplifiers are switched in Acl=11

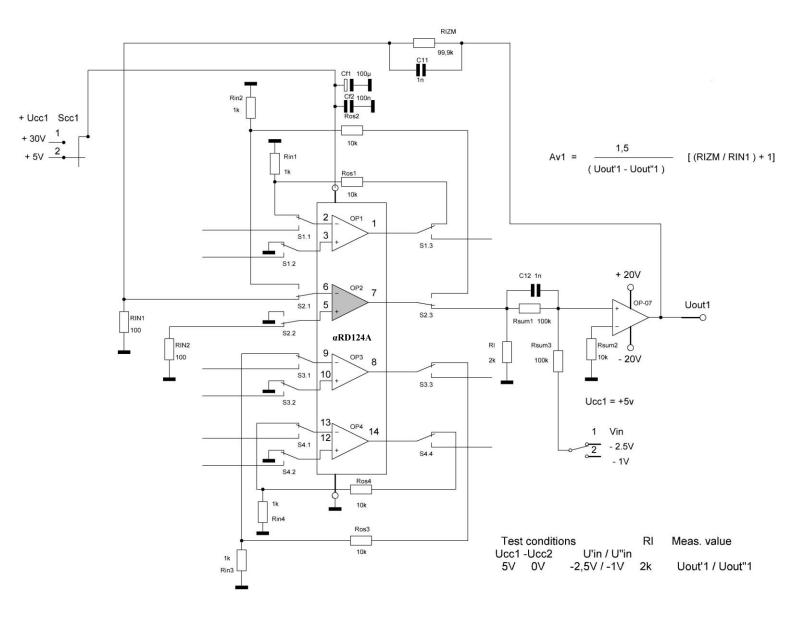


FIGURE 7(a) – OPEN LOOP VOLTAGE GAIN (+30 V)

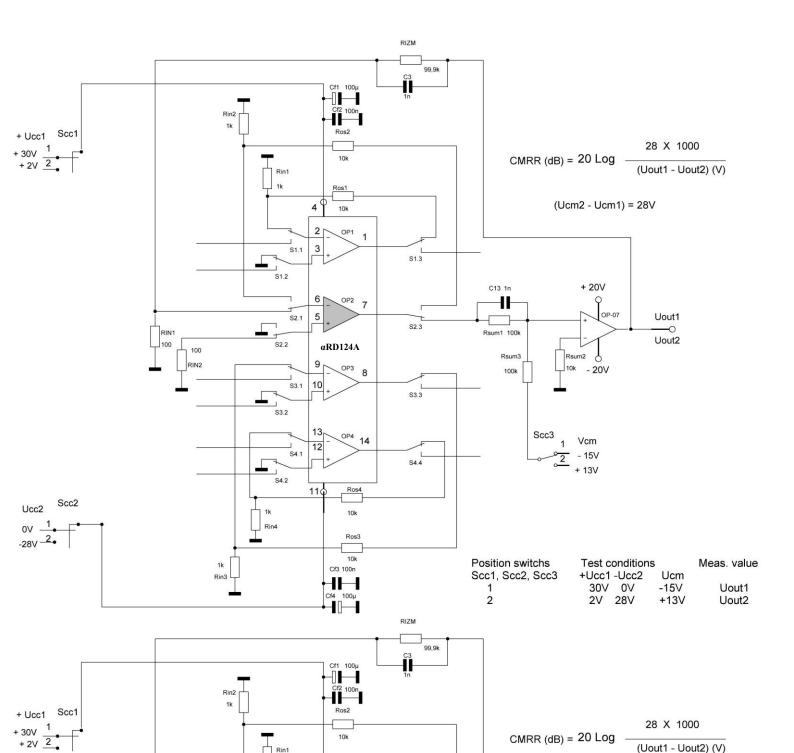


FIGURE 7(b) - OPEN LOOP VOLTAGE GAIN (+5 V)

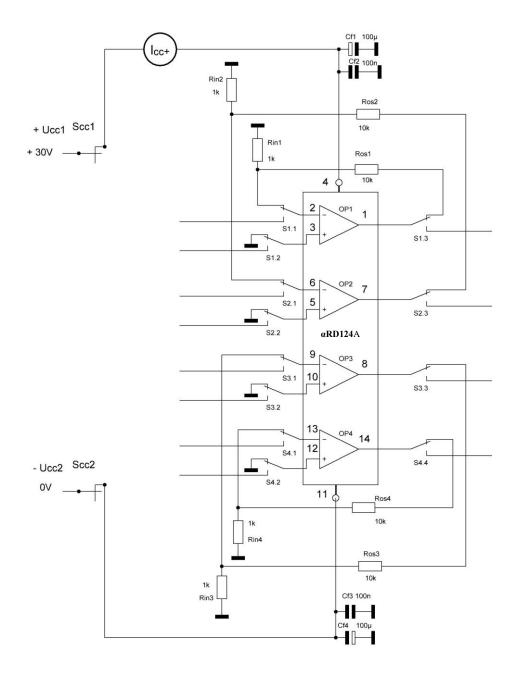


FIGURE 7(c) – COMMON MODE REJECTION RATIO

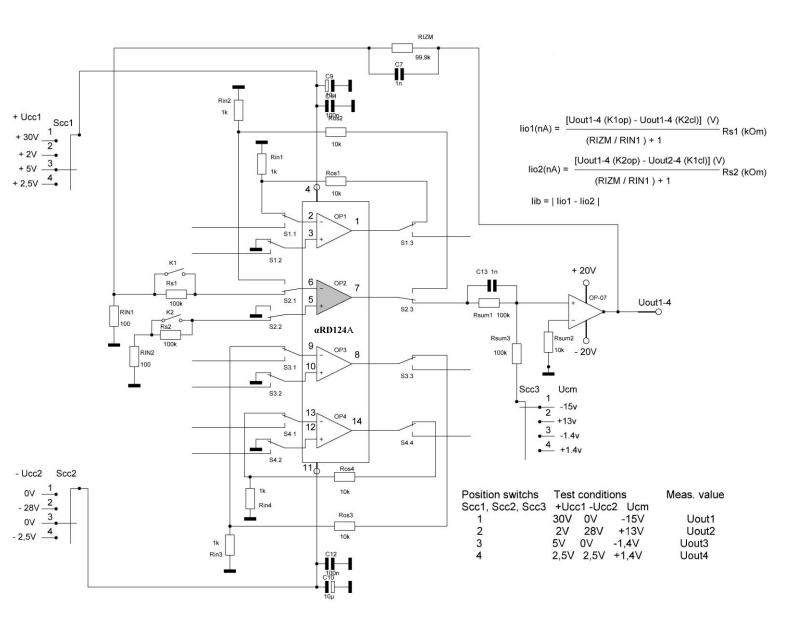


FIGURE 7(d) – POWER SUPPLY CURRENT

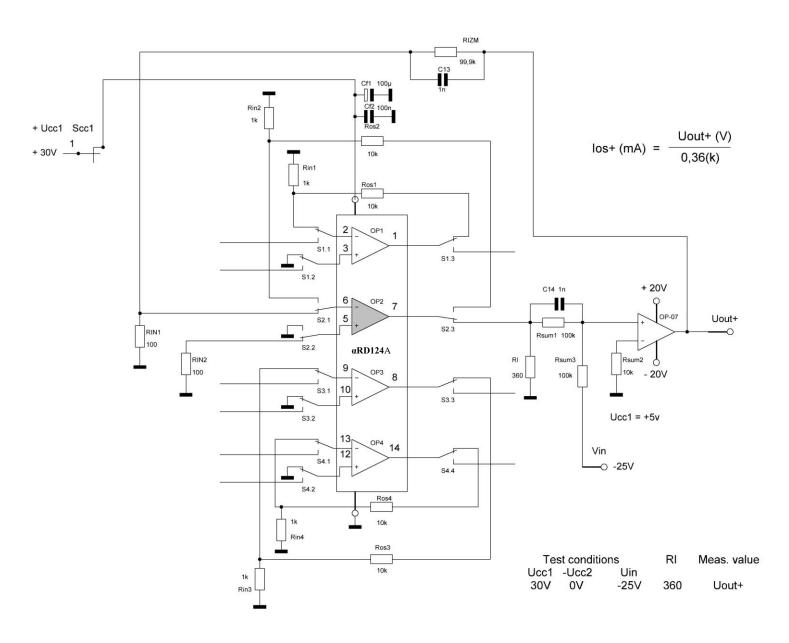


FIGURE 7(e) – INPUT OFFSET AND BAIS CURRENT MEASUREMENTS

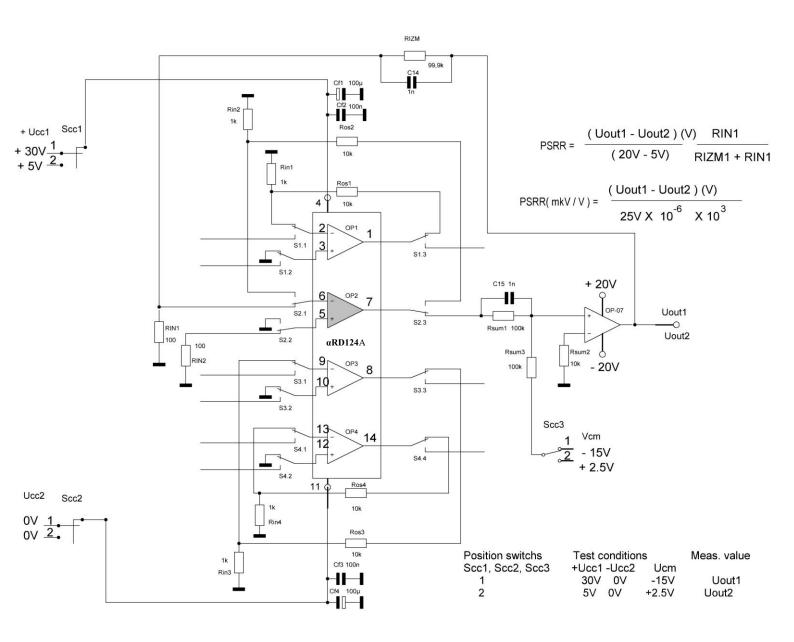


FIGURE 7(f) – SHORT CIRCUIT OUTPUT CURRENT



FIGURE 7(g) – POWER SUPPLY REJECTION RATIO

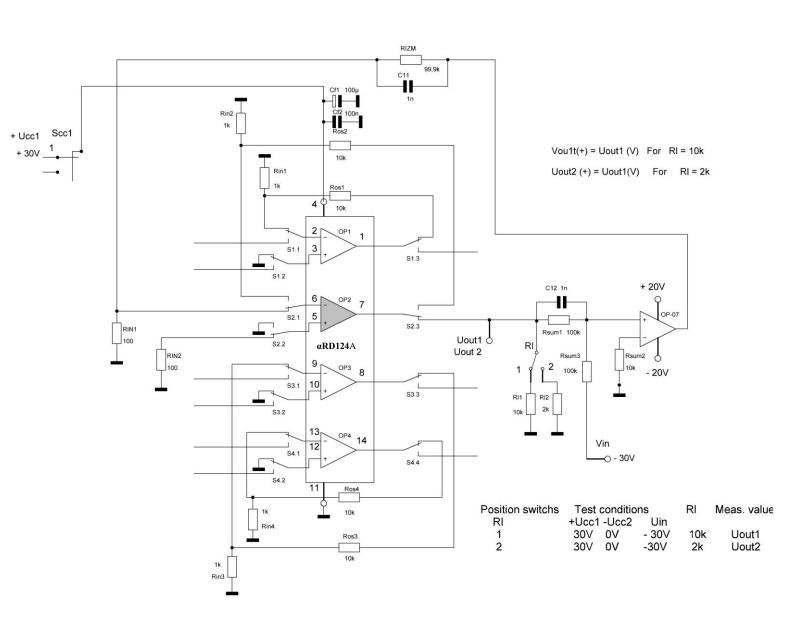


FIGURE 7(h) – INPUT OFFSET VOLTAGE MEASUREMENT

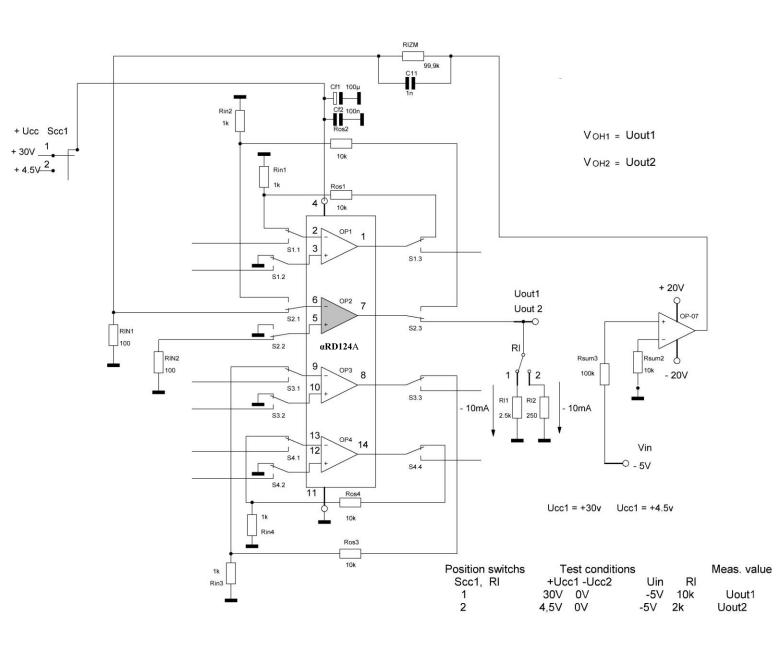


FIGURE 7(i) – OUTPUT VOLTAGE SWING (PLUS)

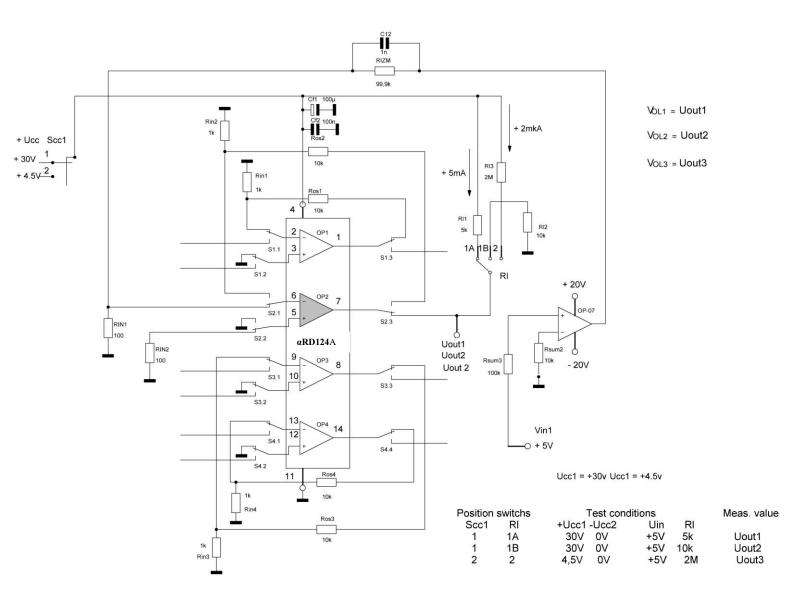


FIGURE 7(j) – OUTPUT VOLTAGE HIGT LEVEL

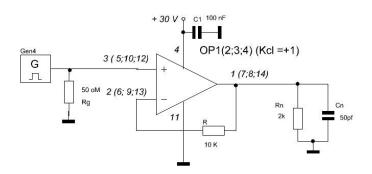
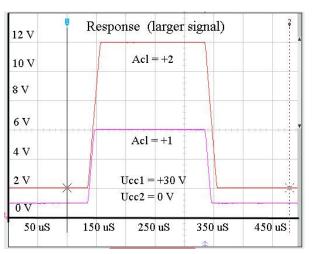


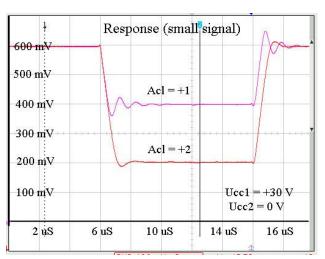
FIGURE 7(k) – OUTPUT VOLTAGE LOW LEVEL

FIGURE 8 – DYNAMIC TEST MEASUREMENT CIRCUIT



NOTES:

- 1. Pulse Generator: rise time \leq 50 ns, repetition rate 1.0 kHz (max).
- 2. All resistors are $\pm 0.1\%$ tolerance and capacitors are $\pm 10\%$ tolerance.


FIGURE 8(a)

SLEW RATE WAVEFORMS

FIGURE 8(b)

OVERSHOOT AND RISE TIME WAVEFORMS

5 **QUALITY ASSURANCE PROVISIONS**

5.1 General

The inspection, general procedures for acceptance, and inspection conditions and methods of testing shall be in accordance with this specification, seller quotation, and buyer purchase order.

5.2 Quality Control practices

The manufacturer shall establish and maintain a quality control inspection system in accordance with ESCC 9000, chapter 7, requirements. The manufacturer shall notify the procuring activity of any changes to its drawings and process specifications that affect form, fit, function, or reliability of this part

5.3 <u>Test Equipment and Inspection Facilities</u>

Test and measuring equipment and inspection facilities of sufficient accuracy, quality, and quantity to permit performance of the required inspection shall be established and maintained by the supplier.

5.4 Inspection

The manufacturer is responsible for the performance of all inspection requirements as specified herein and shall provide a certificate of compliance and summary of parts fallout with each item furnished in accordance with this document.

5.4.1 Precap CSI Inspection

Precap CSI inspection shall be performed after manufacturer's precap inspection, if specified on the Purchase Order.

5.4.2 Quality Conformance Inspection: QCI (Final Acceptance Inspection)

Final CSI inspection shall be specified on the Purchase Order, if required.

5.5 Screening Requirements

Each device shall be screened in accordance with ESCC 9000 requirements and as specified in table 7.

Table 7 – SCREENING REQUIREMENTS

Item	Screen	MIL-STD- 883 Test Method	Detail and Conditions $T_{amb} = 22 \pm 3^{\circ}C$ unless otherwise specified
1	Precap – Internal Visual		ESCC Basic Specification No. 20400
2	Serialization		
3	High Temperature Stabilization Bake	1008	Duration 24 hours at maximum storage temperature rating
4	Temperature cycling	1010	Condition C ; -65°C to 150°C, 10 cycles, 10 minutes min at each extreme
5	Particle Impact Noise Detection (PIND)	2020	Condition A
6	Radiography	2012	2 views
7	Initial electrical measurements – Ambient temperature		As per tables 3(a), 3(b)
8	Electrical measurements High and Low temperature (go-no go)		As per tables 3a, 3b
9	Power Burn-In	1015	Condition B ; $t = 240$ hours ; Tamb = $125^{\circ}C$.
10	Final electrical measurements - Ambient temperature		Repeat Initial measurements as per tables 3(a), 3(b). Measurements shall be made within 96 hours of bias removal - Read and record required
11	Final electrical measurements High and Low temperature		As per tables 3(a), 3(b).
12	Check for lot failure - PDA calculation		$PDA_{max} = 5 \%$
13	Hermetic seal Fine and Gross leak	1014	Test condition A (fine leak) Test condition C (gross leak)
14	External Visual Inspection and dimension check		ESCC Basic Specification No. 20500
15	Hot solder dip (if applicable)		

5.5.1 <u>Percent Defective Allowable (PDA)</u>

PDA over Burn-In is 5%. PDA calculation shall include room temperature electrical measurements, high and low temperature electrical measurements and drift calculations.

5.6 **Quality Conformance Inspection : QCI (Final Acceptance Inspection)**

5.6.1 <u>Environmental / Mechanical Subgroup</u>

Environmental / Mechanical subgroup tests have to be done in accordance with ESCC 9000 chart F4A and table 8 here-in. No reject shall be allowed.

This test is optional and has to be defined / written in the purchase order.

Table 8 : ENVIRONMENTAL / MECHANICAL SUBGROUP TESTS

Examination or test	MIL-STD-883 Test Method	Test Condition	Sample plan		
Mechanical Subgroup					
Mechanical shock	2002	Condition B	15 devices		
Vibration	2007	Condition A	15 devices		
Constant acceleration	2001	Condition E	15 devices		
Hermetic seal Fine and Gross leak	1014	Test condition A (fine leak) Test condition C (gross leak)	15 devices		
Intermediate and end-point electrical measurements		As per table 3(a)	15 devices		
External visual inspection	ESCC Basic Specification No. 20500		15 devices		
Environmental Subgroup					
Temperature Cycling	1010	Condition C	15 devices		
Moisture resistance	1004		15 devices		
Hermetic seal Fine and Gross leak	1014	Test condition A (fine leak) Test condition C (gross leak)	15 devices		
Intermediate and end-point electrical measurements		As per table 3(a)	15 devices		
External visual inspection	ESCC Basic Specification No. 20500		15 devices		

5.6.2 Endurance Capability Subgroup

Endurance subgroup tests have to be done in accordance with ESCC 9000 chart F4A and table 9 here-in. No reject shall be allowed.

Endurance subgroup test is required for the first procurement and must be done again if :

- integrated circuit dice are from a different diffusion lot
- last endurance subgroup exceeds two years of last received Date Code

Table 9 : ENDURANCE CAPABILITY SUBGROUP TESTS

Examination or test	MIL-STD-883 Test Method	Test Condition	Sample plan
Operating life 2000 hours	1005	As per table 6	15 devices
Intermediate and end-point electrical measurements		As per table 3(a)	15 devices
Hermetic seal Fine and Gross leak	1014	Test condition A (fine leak) Test condition C (gross leak)	15 devices
External visual inspection	ESCC Basic Specification No. 20500		15 devices

5.6.3 Assembly Capability Subgroup

Assembly capability subgroup tests shall be conducted in accordance with ESCC 9000 chart F4A and table 10 here-in. No reject shall be allowed.

This test is not optional and shall be ordered in every purchase order.

Table 10 : ASSEMBLY CAPABILITY SUBGROUP TESTS

Examination or test	MIL-STD-883 Test Method	Test Condition	Sample plan
Permanence of marking	ESCC Basic Specification N° 24800		(N/A due to laser marking)
Terminal strength	2004	Condition B2, 3 leads (excluding corner leads) or 10 % of the leads (whichever is greater) shall be randomly selected on each component.	5 devices
Internal visual inspection	ESCC Basic Specification N° 20400		5 devices
Bond strength	2011	Condition C	5 devices
Die shear	2019		5 devices

6. DOCUMENTATION

The manufacturer shall submit the following documentation with each shipment :

- Certificate of Conformance (See chapter 7)
- □ Serial number Log Sheet
- □ Summary report (attribute data) of screening process and results (variable data).
- **D** Burn-In Electrical test data and Delta calculations
- □ Copy of screening

7. <u>CERTIFICATE OF CONFORMANCE</u>

The certificate of conformance consists of and includes as a minimum :

- **D** RD Alfa Part Number
- Rd Alfa sales order
- $\Box \quad \text{Date code}$
- □ Assembly Lot
- Diffusion Lot
- Dice identification (mask reference)
- □ ESD HBM Class
- □ Assembly & Screening manufacturing location
- Detail specification with the applicable revisions
- □ Shipped quantity Serial Numbers

8. PREPARATION FOR DELIVERY

8.1 PACKING AND PACKAGING

The device shall be packaged to prevent mechanical damage in accordance with ESCC 20600. The packing is TBD.

8.1.1 <u>Protection Against Electrostatic Discharge</u>

Each device shall be packaged in a static dissipative static shielded waffle pack to prevent ESD damage according to ESD HBM class in Certificate of Conformance.

8.1.2 <u>Package Identification</u>

Package label shall contain, as a minimum, the following:

- □ Part number
- Date code
- □ Purchase order number
- □ ESD Label.

9. Data reporting

9.1COVERSHEET

The coversheet of the documentation shall state:

- Applicable specifications references,
- \cdot References of the order(s),
- Part number and type designation,
- · Manufacturing date
- · Lot identification,

• Range of serial numbers (when serialization required) separated for deliverable parts and for parts used for lot acceptance test (qualification),

- Manufacturer name and address,
- · Information on deviations,
- · Certificate of conformance
- Date and signature of manufacturer

9.2 SUMMARIES

The documentation shall contain separate summaries for:

- Lot traceability certification of compliance
- Final production test, screening and qualification

The minimum statement per summary shall be as follows:

- Test or measurement number,
- Number of "good" parts before test,
- · Number of "good" parts after test,
- Failed parts serial number,
- · Final results,

.

- Radiographs (when applicable)
- · SEM report

9.3 REJECT LIST

THE DOCUMENT SHALL CONTAIN A REJECT LIST WITH:

- Test or measurement number,
 - Serial number of failed parts, failed parameters, failure mode.

9.4 DATA RECORDS

.

For ESCC screening and lot qualification, complete data records are required, with indication for each part of:

- · Serial number part,
- Test or measurement number

Revision History

Date	Release	Used Documents	Changes	Originator